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High temperature fracture of boron carbide: 
experiments and simple theoretical models 

G. DE WITH 
Philips Research Laboratories, POB 80000, 5600 JA, Eindhoven, The Netherlands 

The mechanical properties of theoretically dense boron carbide with a grain size of about 
10/am have been investigated as a function of temperature. It was found that the fracture 
toughness remained constant at ~ 3.7 MPa m 1/2 up to 1500 K and there was little or no 
decrease in strength from its room temperature value of "~ 350 MPa. Both the order of 
magnitude and the temperature dependence of the fracture energy, calculated from the 
fracture toughness and elastic data, can be explained in terms of simple theoretical 
models. 

1. Introduction 
Boron carbide (B4C) is an important ceramic 
material which is used in lightweight armour for 
the armed forces, as a neutron absorber in nuclear 
reactors and as an abrasive material for grinding 
and/or polishing operations. In view of its refrac- 
tory nature, high temperature applications are 
also within reach. In the latter case the material 
usually has to endure (thermo-)mechanical loads 
as well. Furthermore, since bonding in B4C is 
covalent and the material is available in a dense 
and rather pure form, it seems to be a proper 
material for analysis of its fracture behaviour. 
As little has been hitherto reported about the 
fracture behaviour of B4C at elevated tempera- 
tures, an investigation into this behaviour was 
conducted. A useful general review on B4C dealing 
with structure, properties and some applications 
is given in [ 1 ]. 

2. Experimental details 
The B4C ceramic used is a commercially available 
hot-pressed material* with a purity of at least 
99%. Major impurities are given by the supplier 
to be iron (0.1 wt%) and silicon (0.1 wt%). The 
density of the material, p, was determined using 
Prokic's method [2]. The material was polished 
using 2-4/am diamond powder and then etched 
electrolytically (3 Acm -2 in I%KOH/H20 for 

*Tetrabor, Electroschmelzwerk Kempten G.m.b.H. 
tOverload Dynamics $200. 

3 sec) to reveal the microstructure. The grain size d 
was measured using Mendelson's method [3] 
counting about 200 grains. Strength, o2 and frac- 
ture toughness, Kle, specimens (1 mm x 3 m m x  
15 ram) were machined from the available material 
by spark erosion. This small type of specimen 
makes efficient use of the material available, while 
retaining reliability [4]. The machining manner 
was such that the fracture plane of each specimen 
was parallel to the direction of hot pressing. In the 
specimens used for the Kle measurements a notch 
with a width of ~ 60~m and a relative depth of 

0.15 was machined. Each specimen was pre- 
cracked using a Knoop hardness indentation 
(2 N load) on both sides of the specimen at the 
notch root. Strength and fracture toughness 
measurements were carried out up to 1500K in 
a dry, N2 gas atmosphere (flow rate ~ 10s -I, 
humidity ~ 200ppmV H20) using a all-ceramic 
three-point bending rig (span 12mm) in a Pt- 
resistance furnace. Each specimen was held at 
the testing temperature for about 15min before 
fracturing. The crosshead speed of the testing 
machinet was 0.1mmmin -1 throughout. This 
corresponded to a strain rate of about 2 • 10 -4 
sec -1 [5]. In the calculated Klc value the com- 
pliance factor as given by Brown and Srawley [6] 
was used. The strength was calculated using 
the "mechanics of materials" formula [7]. Five 
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Figure 1 Micrograph of the B4C using optical microscopy 
with interference contrast. 

specimens were used in the Kle determinations at 
each test temperature; likewise for the af deter- 
minations, except at room temperature where 
nineteen specimens were used. Analysis of the 
strength data involved a least squares fit of the 
linearized WeibuU equation, assuming zero 
threshold stress and using mean rank fracture 
probabilities [7, 8]. 

Specimens were etched in fuming K2S207 
(1000K), initially resulting in an etching rate of 
about 3 #m min -1 and in a somewhat smaller rate 
at longer etching times. Etching depths up to 
about 120gin were used. On average eight speci- 
mens were used for the strength measurement of 
the etched material. 

The longitudinal wave velocity, Vl, and the 
shear wave velocity, Vs, were measured at 10 
and 20MHz, respectively, using the pulse-echo 
method* [9]. Young's modulus, E, and Poisson's 
ratio, v, were calculated from vl, Vs and p accord- 
ing to the usual formulae for isotropic materils 
[9]. No correction was made for attenuation. 

Scanning electron microscope (SEM) photo- 
graphs were taken of the fracture surface and a 
machined surface of a specimen fractured at each 
temperature and an etched surface at each etching 
depth. The roughness of the fracture surface was 
determined using a Tencor alpha step profiler 
(stylus tip radius 2/am, magnification 2500x, 
scanned length 4800/1m). The compositions of 
the machined surfaces of the specimens fractured 
at 300 and 1500K were determined by X-ray 
photo electron spectroscopy]" (XPS); (A1Ka 

*Panametrics 5223. 
]'Leybold Heraeus LHS10. 
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Figure 2 Fractograph of the B4C using scanning electron 
microscopy. The fracture mode is entirely transgranular 
(also at higher temperatures) while the residual pores 
are generally found in clusters. 

radiation, overall spectra 500 to 1500 eV, pressure 
10 -6 Pa). 

3. Results and discussion 
In this section the material characteristics, fracture 
toughness, strength, and surface morphology are 
discussed and compared with other available data. 

3.1.  Material characteristics 
The density of the material used was 2.51 x l 0  3 

kgm -3. The theoretical density of B4C is 2.52 x 
103 kgm -3 [14, 16], hence the material used has a 
relative density of 99.6%. A grain size of 10#m 
with a fairly regular distribution was observed. 
A micrograph is shown in Fig, 1. The remaining 
pores are generally found in clusters. This can 
clearly be seen in both the micrograph (Fig. 1) 
and the fractograph (Fig. 2). Further, a number 
of twinned grains was observed. These two charac- 
teristics have been dealt with in earlier literature 
[10, 11]. 

The values of the longitudinal wave velocity as 
measured parallel and perpendicular to the hot- 
pressing axis were the same within experimental 
error (~  0.2%). Hence very little or no crystal- 
lographic texture was present. 

The value of Young's modulus was 461 GPa, 
while Poisson's ratio equalled 0.178. A comparison 
with previous determinations of the E and u of 
dense B4C is given in Table I. A fairly good agree- 
ment amongst the different values of E is observed, 



T A B L E I Elastic properties of B4 C at room temperature 

p (g cm -3) p* d(~m)'~ E(GPa) v Remarks References 

- 0.004 2-7  453 ~ 0.14 (ass.) resonance 12 
- 0.004 - 444 w - - 13 
2.52 (ass.) 0.004 7.4 461�82 0.143 resonance 14 
- - 20 450 - - 15 
2.50 - - 434 0.188 - 16 
2.51 - 10 458 (static) 0.17 - 17 
2.51 - 10 446 (dynamic) 0.17 - 17 
2.46 0.016 0.1-1.0 383 - 3-point bend 18 
2.51 0.005 5 441 0.17 resonance 19 
2.4 - 1 -3  480 - resonance 20 
2.51 0.004 10 461 0.178 pulse echo this work 

*p = porosity. 
?d = grain size. 
~:Calcuhted from E = 460 [(1 --p)/(1 + 2.99p)] GPa. 
w Calculated from E = (450 -- 7.24 X 10 -3 X T- -  3.88 X 10 -6 • T 2) [(1 --p)/(1 + 2.13p)] (T = temperature in ~ C). 
�82 Calculated from E = 470 (1 --4.58 p) GPa. 

except  for the value determined with a bending 

test. The values of  v split into two groups: one 
centred a round  v ~ 0.14 and  one about  v ~ 0.18.  

Our measurement  falls wi thin  the lat ter  group. 

3 .2 .  F r a c t u r e  t o u g h n e s s  

The values of  KIo at the various testing tempera- 

tures are presented in Fig. 3. Klc is roughly con- 

stant  up to 1500 K at a value of  3.7 MPa m v2. The 

fracture mode  was entirely transgranular  at all 

testing temperatures  (Fig. 2). A comparison wi th  

other  relevant exper imental  values at room tem- 
perature is given in Table II. 
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Figure 3 Fracture toughness of the B4C as a function of 
temperature. Bars at the data points indicate the sample 
standard deviation. 

Three other  experimental  values for the frac- 

ture toughness are found  in the l i terature.  A value 

of  1 . 9 M P a m  l a  was determined by Hollenberg$ 

[ 13] using the double torsion technique.  Mecholsky 

et al. [15] determined a value of  about  3 .7MPa 
m 1/2 using the double cantilever beam technique 

and Schwetz et al. [19] recently reported a value 
of  3 . 6 M P a m  1/2 using the single edge notched  
beam test. Our value ( 3 . 6 7 M P a m  l/z) compares 

favourably with the two lat ter  values. 

Calculat ion of  the fracture energy, 3', [7] 

according to 3' = K]e(1  - -  v2)/2E and Klc  values 
from the data groups K~e = 1 . 9M P am  1/2 and 

K l e = 3 . 7 ,  3.6 and 3 . 6 7 M P a m  m results in 

3 ' ~ 4 J m  -2 and  3 ' ~  1 4 J m  -~, respectively, for 
the two groups of  data. An estimate of  3' using a 

bond  energy model  usually yields a good order of  

magni tude  for covalently bonded  materials.  In this 
case it yields 3' = l l . 8 J m  -2 (see Appendix  I). 

Since this calculation assumes a flat macroscopic 
fracture surface an addit ional  macroscopic rough- 
ness factor has to be taken into account .  The pro- 
f i lometer  measurements  resulted in l/lp = 1.013 

-+ 0.004.  Here 1 and lp represent the " t rue"  and 
"projected"  length of  a fracture line, respectively. 

F rom I/lp the fraction "f la t"  fracture area F [ 2 4 ]  is 
calculated according to F = (n(l/lp) -- 4)/(7r - -  4) = 
0.95. The ratio " t rue"  area /"projec ted"  area 
A/Ap is given b y A / A p  = 2 - - F  = 1.05. Hence the 

calculated fracture energy should be mult ipl ied by  
this small correct ion factor. The resulting value for 

3' is 1 2 . 4 J m  -2. Comparing this with the exper- 

:~HoUenberg presents 3, values calculated from E and K 1 e, but  neglects the thickness effect in the calculation of  the K 1 e 
from the double torsion formula. The inclusion of  this correction yields the K1 e value quoted above. 
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T A B L E I I Fracture properties of B4C at room temperature 

p(gcm -s) p* d(/~m)]" of(MPa) Remarks K~e(MPam ~/2) Remarks References 

- 0 2 - 7  - - 1 . 7 7 ~  

- 0.01 - 345 MOR - 
"theoretically dense" 0 2 510 4 pb - 
"theoretically dense" 0 16 430 4 pb - 

- - 2 0  - - 3.7 

- - 4.5 500 - - 
- - 45 230 3 pb - 
2.51 - 10 330 4 pb - 
2.46 0.016 0.1-1.0 506 4 pb,// - 
- 0.02-0.03 8 320 ring test - 
2.51 0.005 5 480 4 pb 3.7 
2.51 0.004 10 382 3 pb, N2 3.67 

DT,// 12 
- 13 
- 2 1  

- 21 
DCB 15 
(calculated from 
3' and E) 
- 22 
- 2 2  

- 1 7  

- 1 8  

- 23 
4 pb 19 
3 pb,// this work 

Abbreviations: DT = Double torsion, 3 pb = three-point bend, 4 pb = four-point bend, MOR = Modulus of Rupture, 
DCB = Double cantilever beam, / /=  fracture plane parallel to hot-pressing direction. 
*p = porosity. 
td  = grain size. 
*The results given in [2] should be corrected for specimen thickness. The corrected value would be 1.93 MPa m ~2 . 

imental value of 7 ~ 1 4 J m  -2 good agreement is 

thus observed. On the other hand, the value of  
7 ~ 4 J m  -2 as determined by  Hollenberg and 
Walther [12] seems rather low. 

The temperature dependence of  3' can be 
calculated by differentiating 7 = K~e (1 - v2)/2E 
while neglecting the temperature dependence of  v. 

This results in 

l ( d T t  = 2 / dK ,  e I l ( d E  1 
t"\dT] ~ \ dT ] + E \dr/" 

For the material used in this investigation Kle  was 
independent of  temperature within experimental 
error. The temperature dependence of  E for B4C is 
known [13], which enabled us to calculate 

1 (d~T) E ( 3 0 0 K )  = --  2.6 x 10-SK -1 

and hence 

3,(300 K) = --  2.6 x 10-SK-1 

Only one other determination of  the tempera- 
ture dependence of  3' for B4C has been found in 
the literature [12]. The material used in that  
investigation had a relative density of  92% and a 
grain size of  2 -7 /~m.  An approximately linear 
decrease up to 1500K was observed, with a 
relative decrease of  

3'(300K) = --  3.8 x 10 .4 K -1. 
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Bearing in mind the similarity of  the materials 
characteristics of  these two materials, the results 

for 1/7(d3`/d T) are in sharp contrast.  
Aside from theoretical models dealing explic- 

itly with surfaces, at least two semi-empirical 
models using bulk data are capable of  estimating 
the value o f  1/7(d3`/dT). First,  there is the 
" thermal"  model  (see Appendix II) which yields 
1/7(300K) (dT/dT)  = --  2.6 x 10-SK -1, and 
secondly the "elastic" model  (see Appendix I l l )  
yielding 1/7(300K) ( d 3 ` / d T ) = -  1.8 x 10-SK -1. 
Both these theoretical values are in good agreement 
with each other and with the present experimental  
value and differ by one order of  magnitude from 
the value deduced from the data of  Hollenberg 
and Walther [12]. Note that both these models 
can be used without  further corrections as the 
fracture mode is entirely transgranular. 

3.3. Strength 
The values ofa~ at the various testing temperatures 
are presented in Fig. 4. The strength af decreases 
slightly from about 380MPa at 300K to about 
340MPa at 1500K. Just as for the toughness 
measurements, the fracture mode was fully trans- 
granular at all testing temperatures. A comparison 
with other experimental values at room tempera- 
ture is again presented in Table II. 

Values between ~ 300 and ~ 500MPa are 
observed for the strength with the lower strength 
values corresponding to the larger grain sizes. The 
value of  382MPa, as observed for B4C at room 
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Figure 4 Strength of the B4C as a function of temper- 
ature. Bars at the data points indicate the sample 
standard deviation. 

temperature in this work, agrees favourably with 
the literature data. 

The strength was observed to be highly variable 
as has been previously been reported [13]. The 
Weibull modulus m as calculated from the five 
specimens at each testing temperature was con- 
stant at a value of about 5. In order to establish 
the possible presence of a bi-modal flaw size 
distribution a Weibull analysis was made for the 
strength data measured at room temperature. 
Although the average strength calculated from the 
nineteen specimens (of = 354 MPa) was somewhat 
smaller than that calculated from the original five 
specimens (o~ = 382MPa), the resulting Weibull 
modulus was again 5. Moreover, no indication of a 
bi-modal flaw size distribution was present in the 
Weibull plot. No characteristic differences could be 
found on the fracture surfaces either. Hence this 
wide flaw size distribution is probably inherent 
to the material. 

Only one other determination of of of B4C at 
elevated temperatures has been found in the 
literature [13]. A decrease from about 345MPa 
at 300K to about 310MPa at 1200K is reported. 
The small decrease as observed in this work agrees 
nicely with these data. 

A closer took at the temperature dependence 
of the mechanical properties reveals an increase 
in strength (Fig. 4) and to a much lesser extent 
also an increase in toughness (Fig. 3). This could be 
interpreted as due to plastic deformation since a 
testing temperature of 1500 K corresponds to about 

0.55Tin (Tin = melting temperature ~ 2750K 
[1]). At this magnitude of relative temperature 
plastic deformation generally commences. On the 
other hand the stress-strain curves were entirely 
linear up to 1500 K and no differences in fracture 
surfaces could be detected. Further it is known 
that the hardness of B4C is still rather high 
(~ 20GPa [25]) at 1500K. Thus from this point 
of view plastic deformation seems unlikely: 
However, in the absence of further experiments 
this question remains unanswered. 

3.4. Surface morphology 
An estimate of the flaw size, a, can be made from 
knowledge of of and Kxe [26] using the equation 

Y 
Kxe = -~ of a 1/2. 

On a number of fracture surfaces the fracture 
origin could be located at the edge of the surface. 
It is therefore probable that the flaws are surface 
flaws. Assuming a semi-circular shape, Y/Z ~ 1.26. 
By using of = 350MPa and Kle = 3.7MPam 1/2 
a value of ~ 70/2m is obtained. From the tempera- 
ture independence of of and Kle it is clear that 
the flaw side is temperature independent, unless 
residual surface stresses due to machining are 
present. 

In order to reveal the possible presence of sur- 
face stress, specimens were etched to various depths 
and the strength at each depth was measured. The 
results are presented in Fig. 5. The strength is 
essentially constant with increasing etching 
depth. Hence only very little or no surface stress 
is present and the flaw size is indeed temperature 
independent. 

Nevertheless, the surface morphology changes 
the surface of an as-machined surface of a B4C 
specimen shows a regular pattern of damage 
(Fig. 6). Upon etching the morphology changes 
gradually until a depth of 30/am is reached 
(Fig. 7). Further etching does not change the 
morphology anymore. 

For all etching depths, the Weibull modulus m 
was again constant at a value of about 5. Since the 
maximum etching depth (~ 120/~m) is larger than 
the estimated flaw size (~ 70/2m) and the strength 
and Weibull modulus are constant, the hypothesis 
that the flaws are inherent to the material (see 
Section 3.3) and not due to machining, is further 
substantiated. 

Temperature also has its influence on the sur- 
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face morphology. If the specimen is held at 900 K 
for 15 min the start of a smoothing process can be 
seen. After holding the specimen for the same time 
at 1300K only the rudiments of the machining 
damage , are observed, while after holding at 
1500K only a smooth surface is left (Fig. 8). The 
smoothing process is a result of the oxidation of 
the B4C, which takes place in spite of the flow of 
the dry N2 gas. This has been shown by an XPS 
analysis of the machined surfaces of specimens 
fractured at room temperature and 1500K. 
A substantial amount of nitrogen is also present 
in this oxidized layer. Probably the low partial 
pressure of oxygen is the reason for the formation 
of a boron oxy-nitride instead of boron oxide. 

Since the strength uf and the fracture toughness 
Kle are essentially temperature independent, the 
smoothed surface layer has no healing effect on 
the flaws, at least for the relatively short holding 
time used in this work. 

Figure 5 Strength of the B4C as a function 
of etching depth. Bars at the data points 
indicate the sample standard deviation. 

4. Summary and conclusions 
The high temperature fracture behaviour of hot- 
pressed boron carbide has been investigated. The 
material used was theoretically dense with a grain 
size of about lO/~m. It was found that the fracture 
toughness was constant at "-~ 3.7 MPa m 1/2 up to 
1500K and there was little or no decrease in 
strength from its room temperature value of 
~350MPa.  The strength is fairly variable, as 
reflected by the low Weibull modulus of ~ 5 
and probably inherent to the material. Both the 
order of magnitude and the temperature depen- 
dence of the fracture energy, calculated from 
the fracture toughness and elastic data, can be 
explained in terms of simple theoretical models 
using bulk thermal and elastic data. 
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Figure 6 Surface of the B4C as-machined. 
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Figure 7 Surface of the B4C after etching 30 ~m. 



Figure 8 Surface of the B4C after holding at 1500 K for 
15 min. 
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Appendix  I: The bond energy model 
For covalently bonded materials an estimate of 
the fracture energy, 3' can be made by counting 
the number of fractured bonds per unit area and 
multiplying them by the bond energy [26].. For 
single crystals the calculation is straight forward, 
although some ingenuity is necessary for a high 
index plane [27, 45]. For polycrystalline material 
an appropriate average has to be calculated, which 
is not a simple operation. An approximate average, 
however, may be calculated by using a simple 
model [28, 29]. For compounds an "average" 
atom must be used. 

The following quantities are defined in advance: 
Avogadro's constant (6.023 x 1023mo1-1) 
molar volume 
density of the material 
molecular weight 
volume of the (average) atom 
(average) bond energy 
mean coordination number in the bulk 
number of fractured bonds per atom 
total surface area of one (N) atom(s) 
area of one (iV) surface atom(s) exposed 
to the surface . 

ap(Ap) projected area of one (N) surface 
atom(s) 

Now consider one mole of material. Taking 
into account only nearest neighbour interactions 
the atomization energy per mole at 0 K, H(0 K) 
is given by 

N 
H(0K) = ~-Z~b. (A1) 

In the same approximation 

AZ(o AZH(O K) 
3' = - (A2) 

2ap ZNap 

The factor 1/2 arises from the fact that the frac- 
ture process yields two fracture surfaces. In order 
to calculate 7, the quantities Ap and A Z / Z  have 
to be estimated: 

First, consider the estimation of Ap. The poly- 
crystal is simply regarded as a stack of layers 
containing space Idling polyhedra representing 
the average Wigner-Seitz cell. Miedema [29], in 
his application of a similar model to metals, takes 
for the shape of the Wigner-Seitz cell the average 
of cube and a sphere. The volume V of a cube and 
sphere are given by: 

47rr 3 
Veube = a3, Vsphere = 3 (A3) 

where a and r are the edge length of the cube and 
radius of the sphere, respectively. Similarly the 
total surface A is given by: 

Acube = 6a 2, Asphere = 4rrr 2. (A4) 

Accordingly 

A = (Aeube + Asphe~)/2 

/ 3 \2~3 gt: r r  2/3 I'~P 2/3 = v~ho~) /2  t o  Veube + 47/" 
\-~,/ 

= a V 2/3, a ~ 5.42. (A5) 

The value for a seems a reasonable choice. A simi- 
lar calculation for the truncated octahedron (or 
a-tetracaidecahedron) representing the Wigner- 
Seitz cell in a body centred cubic lattice results 
in a ~5 .35  [30], while the use of a rhombic 
dodecahedron, corresponding to a face centred 
cubic lattice results in a ~ 5.34 [30]. 

The projected area may now be estimated as 
follows 

a = f l a  s = f l f2ap (A6) 

where fl and f2 are defined by 

f l  = alas, f2 = as/ap. (A7) 

Since it is assumed that in a fracture surface 
all possible orientations of the Wigner-Sietz cell 
are exposed to the surface, the following theorem 
from stereology may be usefully employed: For 
a convex body the total surface area, a, is related 
to the projected surface area, ap, averaged over 
all directions [31 ] by 

a = 4ap(=fl f2ap).  (A8) 
Hence 

ap = a/4 = (o~v2/3) /4 .  (A9) 

Second, consider the estimate for AZ/Z .  From 
the stack-of-layers model, one might say that the 
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T A B L E A I Data for B4C fracture energy calculation 

p 2520 kgm -3 [16] 
M 55.2 X 10-3kgmol -l 
V=M/p 2.19 X 10 -s m a tool -1 
H(300K)* 3.14X106 Jmo1-1 [33] 

*The difference between H (300 K) and H (0 K) is only 
minor. 

bonds holding each atom are distributed evenly 
among three planes: the plane of the atom itself 
and the two neighbouring planes. In this model 
therefore, on average each plane has a share of 
1/3 of the bonds and AZ/Z = 1/3. Since for a 
random distribution of bonds the following 
relation holds 

f, = a l a  s = Z/AZ (A10) 

it is clear from Equation A8 that either AZ/Z 
(= 1/fa) or f2 can be chosen at will, but not both 
quantities. 

The stack-of-layers model with AZ/Z= 1/3 
has been used before [29, 32]. In [29] an indepen- 
dent estimate for f2 was made, using a model of 
irregular dodecahedra like atoms (which incident- 
ally do not yield matching fracture surfaces). 
The relatively low result f2 = 2/31/2 ~ 1.15 is 
probably due to the choice of a particular orien- 
tation instead of a random one and not consistent 
with the assumed value of AZ/Z = 1/3. It is known 
that estimates for various surface orientations 
may differ considerably, e.g. estimates based on 
the 100,  110  and 111 planes of an array of 
tetracaidecahedra would result in f2 = 1.55, 1.27 
and 1.56, respectively. 

Finally, solving for 3  ̀gives 

AZH(O K) 4 .N_U3 V_2/3H(O K) 
3"  - -  

ZNap f la 
0.25N -1/a V-2/3H(O K) 

(fl = 3, a = 5.3) (Al l )  

Using the relavant data for B4C (Table AI) 
the calculation for the fracture energy yields 
3'-- l l . 8 J m  -2. 

Append ix  I1: The " t h e r m a l "  model 
The method as outlined in Appendix I yields a 
useful estimate of the fracture energy, 3 ,̀ but, it 
does not give explicitly the temperature depen- 
dence of 3'. An interesting way of estimating this 
dependence is given by the "thermal model" or 
"method of thermal transformation" ([34], see 
also [35]). 

Assume that one mole of solid is heated from 
/'1 to T2 under constant pressure. The internal 
energy is represented by the sum of the potential 
energy H (= bond energy) and the kinetic energy 
L (= vibration energy). From conservation of 
energy it follows that 

H(T2) -- H(T~) + L(T2) -- L(T~) = 

frr~ep(T)dT_ f r ,  [DV~ j ,  pt j, d r  (B1) 

where p is the external pressure, V is the volume 
of the body and cp the specific heat at constant 
pressure. 

If the external loads are small, i.e. much less 
than the theoretical strength, the last term on 
the right hand side of, e.g. Equation B1, can be 
ignored. This is equivalent to the usual assumption 
that the internal energy and the enthalpy are 
numerically equal to a first approximation. 
Further it is assumed that the potential energy 
is much greater than the kinetic energy 

L(T1) ~ H(T1) (B2) 

a condition normally fulfilled if Ta is low enough. 
From Equation B1 it then follows that 

/ .  7" 2 

H(T,) = - JT %(T)dT+ L(T=) + H(T=) (B3) 

At the boiling point T2 = Tb, H(Tb)=  0 while 
L(Tb) will be equal to the mean kinetic energy of 
particles at pressure P and temperature Tb. The 
latter is 3/2 RTb, according to the kinetic theory 
of gases. Hence it follows that 

Tb 
H(T) = -- .f T cp(T)dT + ~RT b. (B4) 

Heat of melting, heat of evaporation and, if 
present, heat of phase transformations should be 
included in the first term of the right-hand side of 
Equation B4. In principle, the value of H (300 K), 
and hence of 3' (see Appendix I), can be calculated 
from Equation B4. Unfortunately only data for 
solid B 4 C  a r e  available. 

Fortunately, the temperature dependence of 3' 
can be estimated. Differentiation of Equation A7 
yields 

1(61 l(d ) 
3  ̀ d-r  = - (B5) 

where a is the linear thermal expansion coefficient. 
The temperature dependence of H is given by 
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d H  
- cp(T) (B6) 

dT 
according to Equation B4. 

For B4C the ep value is measured up to ~ 1700 
K [36, 37] and both references give cp (300 K) 
54Jmo1-1 K -1. The a for B4C is also known 
[38]: a ( 3 0 0 K ) ~ 4 . 3  x 10 -6 K -1 . From these 
data and H (300 K) (see Appendix I) the relative 
decrease of 3' with temperature for B4C is estimated 
to be: 

1 ( d ~ ) ~ - - 2 . 6  x 10-s K-1 (B7) 
3'(300 K) 

Appendix I I1: The "elastic" model 
The "elastic" model described in this appendix has 
been used to estimate the fracture energy of alkali 
halides, metals, oxides and covalently bonded 
materials. It is often attributed to Gilman (e.g. 
[39]) but in fact Polanyi [40] and Orowan [41] 
basically used it as early as 1921 and 1934, res- 
pectively. 

In the model it is assumed that the attractive 
stress o(x) between two crystal planes can be 
approximated by a sine function from ao (the 
equilibrium interplanar spacing) up to a0 + X. 
Here X is the "range" of the attractive forces. 

7rx r 
cr = Oo s i n - -  X 

0 < x '  - x--ao <X. (C1) 

For small displacement from the equilibrium 
interptanar spacing the material should behave 
linearly elastic and thus 

ir x t gr x t 
sin ~ (C2) 

X X 
and C,x 

o = E = Oo\ (C3) 

where E is the appropriate Young's modulus. The 
full expression for the attractive stress is then 
given by 

E'A 7rX r 
o = - -  s i n - -  (C4) 

7rao X 

Now the fracture energy (or in Gilman's terms 
surface energy) is 

.f?o(x)d x EX x Inx'~ , 
- 2~ao fs s i n t ~ - ) d x  

1 
3' 

= - -  - ( c s )  
ao \~ / 

The choice of X largely dictates the extent of 
agreement that is reached with experiment. 
Gilman [39] and others [26] state that good 
agreement between the theoretical and experi- 
mental value of surface energy is reached when 
X is taken to be equal to the mean radius of the 
atoms or ions in the surface plane. A more 
elaborate analysis [42] indicates that the model 
overestimates 3" with a factor of 1.4 to 2, however. 

For single crystals the calculation of 3' is 
straight forward. For polycrystalline material, 
however, it is not clear what choice should be 
made for X2/ao. 

The temperature dependence of Klc can be 
estimated however, [43] by differentiating 
formula C5. Assuming X to be constant, we obtain 

1 (d3"] = l__(dEt l i d a o  t = 1 ( ~ )  
7 - L ~ ]  E ~dT] ao \dT]  -E --a. 

(C6) 

where a is the linear thermal expansion coefficient. 
The relation between 3, and Kle is described by 
[7]: 

K~ e = 2E3'/(1 -- u ~) (C7) 

where u is Poisson's ratio. Differentiating once 
more, neglecting the temperature dependence of 
u and substituting expression C6 for 1/3' (d3'/dT), 
we have 

K l c  \ a T  ] = E -  _ ( C 8 )  

From the temperature dependence of E [13] and 
a [38] the relative decrease in 3' with temperature 
for B4C is estimated to be: 

l (6 , )  
7(300 K) 

-- 1.8 x 10 -s K -1. 

(Cl l )  
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